Задача №1
Для производственной практики на 30 студентов предоставлено 15 мест в Кирове, 10 – в Слободском, 5 – в Кирово-Чепецке. Найти вероятность того, что два определенных студента попадут на практику в один город.
Задача №2
Три стрелка стреляют по цели. Вероятность попадания в цель для первого стрелка равна 0,75; для второго – 0.8; для третьего – 0,9. Найти вероятность того, что а) только один стрелок попадёт в цель; б) не менее одного стрелка попадет в цель.
Задача №3
Студент сдаёт сессию из двух экзаменов. Он добросовестно подготовился и считает, что на каждом экзамене получить «4» с вероятностью 9\10, «2» получить не может, а получение «три» и «пять» для него равновероятно. Какова вероятность того, что: а) он сдаст сессию на «отлично»? б) сдаст сессию без троек и двоек?
Задача №4
Вероятности того, что во время работы цифровой электронной машины произойдёт сбой в арифметическом устройстве, в оперативной памяти, в остальных устройствах, относятся как 362:5. вероятности обнаружения сбоя в арифметическом устройстве, в оперативной памяти и остальных устройствах соответственно равны 0,8; 0,9; 0,9. Найти вероятность того, что возникший сбой будет обнаружен в оперативной памяти.
Задача №5
В урне лежит 12 белых и 8 красных шаров. Вынули 8 шаров. Какова вероятность того, что:
а) ровно три из них красные;
б) хотя бы один красный.
Задача № 6
Семена пшеницы прорастают в среднем с вероятностью 0,3. Найти вероятность того, что среди взятых 300 семян прорастет:
а) 100 семян;
б) от 80 до 130 семян.
Задача № 7
Вероятность изготовления нестандартной детали равна 0,2. Для контроля наудачу взяты 3 детали. Требуется:
А) найти закон распределения вероятностей дискретной случайной величины X – число нестандартных деталей среди взятых для контроля;
Б) определить вид закона распределения случайной величины X;
В) построить многоугольник распределения;
г) составить функцию распределения вероятностей случайной величины и построить ее график;
д) вычислить числовые характеристики X;
е) найти .
Задача № 8
Случайная величина X задана интегральной функцией распределения вероятностей F(x).
;
Требуется:
а) построить график функции F(x);
б) найти дифференциальную функцию распределения вероятностей f(x) и построить ее график;
в) вычислить числовые характеристики X;
г) найти .
Задача № 9
Ошибки 1000 результатов измерений дальности приведены в таблице:
Интервал () | (-40;-24) | (-24;-8) | (-8;8) | (8;24) | (24;40) |
Число ошибок в интервале () |
100 |
240 |
200 |
400 |
60 |
Построить гистограмму и эмпирическую функцию распределения ошибок измерения дальности.
Задача №10
Имеются данные по 6 семьям об уровне доходов на 1 человека в год (Х) и покупательском спросе – расходах на одежду на 1 чел. в год (У), в тыс. руб.
Уровень дохода на 1 чел. в год | x | 60,1 | 62,9 | 65,0 | 78,2 | 82,3 | 84,0 |
Расход на одежду на 1 чел в год | y | 26 | 23 | 21 | 37 | 19 | 28 |
Найти методом наименьших квадратов:
а) линейную зависимость y=ax+b покупательского спроса – расхода на одежду от уровня доходов;
б) определить ожидаемый расход при уровне дохода 70,72,75 тыс. руб.
Построить найденную прямую и экспериментальные данные на одном чертеже.
с дистанционным обучением?