Помощь студентам дистанционного обучения: тесты, экзамены, сессия
Помощь с обучением
Оставляй заявку - сессия под ключ, тесты, практика, ВКР
Заявка на расчет

Ответы на вопросы по электротехнике (Вариант 2)

Автор статьи
Валерия
Валерия
Наши авторы
Эксперт по сдаче вступительных испытаний в ВУЗах
Преимущества микропроцессорной релейной защиты по сравнению с электромеханической. Отказ от электромеханических и статических реле, обладающих значительными габаритами, позволил более компактно размещать оборудование на панелях РЗА. Такие конструкции стали занимать значительно меньше места. При этом управление посредством сенсорных кнопок и дисплея стало более наглядным и удобным. Внешний вид панели, включающей блок микропроцессорной релейной защиты, показан на рисунке. Сейчас внедрение МУРЗ стало одним из основных направлений в развитии устройств релейных защит. Этому способствует то, что кроме основной задачи РЗА — ликвидации аварийных режимов, новые технологии позволяют реализовать ряд дополнительных функций. К ним относятся: регистрация процессов аварийного состояния; опережение отключения синхронных потребителей при нарушениях устойчивости системы; способность к дальнему резервированию. Реализация таких возможностей на базе электромеханических защит ЭМЗ и аналоговых устройств не осуществляется ввиду технических сложностей. Микропроцессорные системы релейной защиты точно работают по тем же принципам быстродействия, избирательности, чувствительности и надежности, что и обычные устройства РЗА. В процессе эксплуатации выявлены не только преимущества, но и недостатки таких устройств, а по некоторым показателям до сих пор ведутся споры между производителями и эксплуатационниками. Тема 2 «Электрические станции и подстанции» Выбор высоковольтных выключателей и разъединителей. Высоковольтные выключатели – это коммутационные аппараты, предназначенные для включения, отключения электрических цепей в нормальных режимах и для автоматического отключения поврежденных элементов системы электроснабжения при КЗ и других аварийных режимах. Высоковольтные выключатели имеют дугогасительные устройства и поэтому способны отключать не только токи нагрузки, но и токи КЗ. По конструктивным особенностям и способу гашения дуги различают масляные, воздушные, элегазовые, электромагнитные, автогазовые, вакуумные выключатели. К особой группе относятся выключатели нагрузки, рассчитанные на отключение токов нормального режима. Кроме того, по роду установки различают выключатели для внутренней, наружной установки и для комплектных РУ. Высоковольтные выключатели должны предусматриваться на линиях, как правило, в начале, т. е. со стороны питания. Количество коммутационных аппаратов на различных присоединениях выбирается исходя из требований надежности и принципа построения систем релейной защиты и сетевой противоаварийной автоматики. Высоковольтные выключатели выбирают в зависимости от места установки, способа обслуживания и назначения. Параметры выключателя выбирают по техническим данным таким образом, чтобы технические характеристики выключателя были больше расчётных. При проектировании подстанции высоковольтные выключатели выбираются в соответствии с их назначением по четырем условиям: 1 Выбор по номинальному напряжению сводится к сравнению номинально 2 го напряжения установки и номинального напряжения установки выключателя: 3 Выбор по номинальному току сводится к выбору выключателя, у которого номинальный ток является ближайшим большим к расчётному току установки, т.е. должно быть соблюдено условие: [10] (38) [10] (39) 3 По отключающей способности выключатели выбираются по предельно отключающему току (Iпо), т.е. току, который выключатель надёжно разрывает при коротком замыкании без повреждений, препятствующих дальнейшей работе: [10] (40) Iпо – расчетная величина трехфазного тока КЗ в момент отключения 4 Проверка на термическую стойкость. Для проверки на термическую стойкость при сквозных токах короткого замыкания определяют номинальный и расчётный тепловой импульс: [10] (41) [10] (42) [10] (43) 5 Проверка на электродинамическую стойкость при сквозном коротком замыкании: [10] (44) По расчетным условиям выбираем выключатель типа ВВЭ-10-20/630-У3: В – выключатель; В – вакуумный; Э – встроенный электромагнитный привод; 10 – номинальное напряжение, 10кВ; 20 – предельный сквозной ток, кА; 630 – номинальный ток, А; У3 – категория размещения. Вакуумные выключатели имеют простую конструкцию, высокую надёжность, малые размеры, большую коммутационную износостойкость, полностью пожаро- и взрывобезопасны, экологически чисты, не создают шума при операциях, требуют малых эксплутационных расходов. Выбор измерительных трансформаторов тока. Трансформаторы тока, используемые для коммерческого учёта электроэнергии, должны быть включены в государственный реестр средств измерений, иметь действующее свидетельство (отметку в паспорте) о поверке СИ. Трансформаторы тока выбирают по номинальному напряжению, первичному и вторичному токам, по типу установки, конструкции, классу точности. Для присоединения расчётных счётчиков электроэнергии используются трансформаторы тока с классом точности не более 0,5S. Установка ТТ осуществляется на присоединениях напряжением класса 0,4 кВ. В качестве основных нормативных документов регламентирующих требования по размещению ТТ и их параметрам используется ПУЭ (Глава 1.5 «Учет электроэнергии»), Учитывая конструктивные особенности сборок низкого напряжения, расположение токоведущих шин, необходимо использовать шинные трансформаторы тока типа ТШП-0,66, ТШ-0,66, и трансформаторы тока опорного типа ТОП-0,66, Т-0,66. Назначение и конструкции разъединителей. Разъединители – аппараты, которые предназначены для включения и отключения участков электрических цепей под напряжением при отсутствии нагрузочного тока. Они применяются во всех высоковольтных установках для обеспечения видимого разрыва при отключении какого-либо участка цепи, а также для производства переключений и набора нужной схемы. Все операции с разъединителями, как правило, выполняются при обесточенных цепях. После отключения разъединителей с обеих сторон объекта, например, выключатель или транформатор и другие аппараты должны заземляться с обеих сторон, либо при помощи переносных заземлителей, либо спец. заземляющих ножей, встраиваемых в конструкцию разъединителя. Строятся разъединители, как для внутренней, так и для наружной установки на всю шкалу токов и напряжений. К разъединителям предъявляются следующие требования: Контактная система должна надежно пропускать номинальный ток сколько угодно длительное время. В особо тяжелых условиях работают разъединители наружных установок, подвергающиеся воздействию воды, пыли, льда. Контактная система должна иметь необходимую динамическую и термическую стойкость. Разъединитель и механизм его привода должны надежно удерживаться во включенном положении при протекании тока К3. В отключенном положении подвижный контакт должен быть надежно фиксирован, так как самопроизвольное включение может привести к очень тяжелым авариям и человеческим жертвам. В связи с особой ролью разъединителя как аппарата безопасности промежуток между разомкнутыми контактами должен иметь повышенную электрическую прочность. Привод разъединителя целесообразно блокировать с выключателем. Операции с разъединителем должны быть возможны, только когда выключатель отключен. Разъединители могут выполняться как трехполюсными на общей раме, обычно до 35 кВ, так и однополюсными при более высоких напряжениях. Последнее обусловлено тем, что при напряжениях свыше 35 кВ требуемые расстояния между фазами достаточно велики и общая рама становится чрезвычайно громоздкой и тяжелой. Полюс разъединителя независимо от разнообразия конструкций состоит из неподвижного и подвижного (ножа) контактов, укрепленных на соответствующих изоляторах опорной плиты или рамы и привода. Основным элементом разъединителя являются его контакты. (Как мы уже говорили, они должны надежно работать при номинальном режиме, а также при перегрузках и сквозных токах короткого замыкания.). Нагрев, динамическая и термическая стойкость, а также электрическая и механическая прочность изоляции являются основными вопросами расчета и конструирования разъединителей. В разъединителях применяют высокие контактные нажатия. При больших токах контакты выполняют из нескольких (до восьми) параллельных пластин. Применяют пластины прямоугольного, швеллерного и круглого сечений. Разъединители снабжаются ручным, электродвигательным либо пневматическим приводом. Разъединители на малые токи при напряжениях до 35 кВ могут управляться вручную изоляционной штангой. Наибольшее распространение при токах до 3000 А включительно получил ручной рычажный привод. При номинальном токе свыше 3000 А – ручной червячный привод. Электродвигательные и пневматические приводы используются для управления тяжелыми разъединителями, когда ручное управление затруднено или невозможно, а также при дистанционном и автоматизированном управлении. Разъединитель предназначен для включения и отключения обесточенных участков электрических цепей переменного или постоянного тока с созданием видимого разрыва, а также заземления отключенных участков при помощи стационарных заземлителей. Разрешается отключение и включение разъединителями: -нейтралей силовых трансформаторов 110-220 кВ; -заземляющих дугогасящих реакторов 6-35 кВ при отсутствии в сети замыкания на землю; -намагничивающего тока силовых трансформаторов 6-500 кВ; -зарядного тока и тока замыкания на землю воздушных и кабельных линий электропередачи; -зарядного тока систем шин, а также зарядного тока присоединений с соблюдением требований нормативных документов. В кольцевых сетях 6-10 кВ разрешается отключение разъединителями уравнительных токов до 70 А и замыкание сети в кольцо при разности напряжений на разомкнутых контактах разъединителей более, чем на 5%. Допускается отключение и включение трехполюсными разъединителями наружной установки при напряжении 10 кВ и ниже нагрузочного тока до 15 А. Допускается дистанционное отключение разъединителями неисправного выключателя 220 кВ и выше, зашунтированного одним выключателем или цепочкой из нескольких выключателей других присоединений системы шин (схема четырехугольника, полуторная и т.п.), если отключение выключателя может привести к его разрушению и обесточению подстанции. Для внутренних установок, не подверженных воздействию атмосферы и с напряжением, как правило, не выше 20 кВ, наиболее широко распространены рубящие разъединители с движением подвижного контакта (ножа) в вертикальной плоскости. Для получения электродинамической стойкости контактов необходимо соответствующее контактное нажатие. С ростом тока контактное нажатие и усилие, необходимое для включения, возрастают. При ручных приводах контактные нажатия стремятся брать возможно малыми. С этой целью применяют сдвоенные ножи и электромагнитные замки. Назначение выключателей, принцип действия элегазовых выключателей. При повышении номинальных токов отключения и номинальных напряжений необходимо не только совершенствовать конструкцию выключателей, но и заниматься поисками дугогасительных сред, обладающих высокой электрической прочностью и дугогасительной способностью. Были исследованы фреон, четыреххлористый углерод и шестифтористая сера. Благодаря высокой электрической прочности и большой дугогасящей способности была выбрана шестифтористая сера SF6. Этот газ получил название электротехнического газа, или элегаза. Элегаз является «электроотрицательным» газом. Такое название связано с тем, что его молекулы обладают способностью захватывать электроны. При этом образуются малоподвижные, тяжелые отрицательные ионы, которые медленно разгоняются электрическим полем и удаляются из зоны горения основные носители заряда — подвижные электроны. Благодаря этому элегаз обладает высокой электрической прочностью. Благодаря химической инертности элегаза (в диапазоне до 800 °С) допустимая температура медных контактов может быть увеличена с 75 (для воздуха) до 90 °С. Это позволяет дополнительно повысить токовую нагрузку аппарата. Элегаз негорюч, пожаробезопасен. Описанные выше положительные свойства позволили широко использовать элегаз в высоковольтных выключателях, силовых трансформаторах, кабелях высокого напряжения и герметизированных комплектных распределительных устройствах. Недостатком элегаза является переход из газообразного состояния в жидкое состояние при относительно высоких температурах. Так, например, при температуре 0°С газ превращается в жидкость при давлении 1,31 МПа. При температуре — 40°С элегаз превращается в жидкость при давлении около 0,35 МПа. Это заставляет использовать его либо с подогревающим устройством, что усложняет конструкцию либо при низком давлении, что снижает дугогасительные свойства. Для электрических аппаратов применяется газ с высокой степенью очистки от примесей, что усложняет и удорожает его получение. Конструкция элегазовых выключателей. Дугогасящая способность элегаза наиболее эффективна при большой скорости его струи относительно горящей дуги. Возможны следующие исполнения ДУ с элегазом: — с автопневматическим дутьем. Необходимый для дутья перепад давления создается за счет энергии привода; — с охлаждением дуги элегазом при ее движении, вызванном взаимодействием тока с магнитным полем. — с гашением дуги за счет перетекания газа из резервуара с высоким давлением в резервуар с низким давлением (выключатели с двойным давлением). В настоящее время широко применяется первый способ. Назначение выключателей, принцип действия вакуумных выключателей В настоящее время в мире налажен промышленный выпуск высоконадежных быстродействующих вакуумных выключателей, способных отключать большие токи в электрических сетях среднего (6, 10, 35 кВ) и высокого напряжения (до 220 кВ включительно). Поскольку разрежённый газ (10−6…10−8 Н/см²) обладает электрической прочностью, в десятки раз превышающей прочность газа при атмосферном давлении, то это свойство широко используется в высоковольтных выключателях: в них при размыкании контактов в вакууме сразу же после первого прохождения тока в дуге через ноль изоляция восстанавливается, и дуга вновь не загорается. В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда — вакуумной дуги, существование которой поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, проводит электрический ток, поэтому ток протекает между контактами до момента его перехода через ноль. В момент перехода тока через ноль дуга гаснет, а оставшиеся пары металла мгновенно (за 7—10 микросекунд) конденсируются на поверхности контактов и на других деталях дугогасящей камеры, восстанавливая электрическую прочность вакуумного промежутка. В то же время на разведенных контактах восстанавливается приложенное к ним напряжение. Достоинства простота конструкции; простота ремонта — при выходе из строя камеры она заменяется как единый блок; возможность работы выключателя в любом положении в пространстве; надежность; высокая коммутационная износостойкость; малые размеры; пожаро- и взрывобезопасность; отсутствие шума при операциях; отсутствие загрязнения окружающей среды; удобство эксплуатации; малые эксплуатационные расходы. Недостатки сравнительно небольшие номинальные токи и токи отключения; возможность коммутационных перенапряжений, обусловленных срезом тока, при отключении малых индуктивных токов — современная разработка вакуумного выключателя с возможностью синхронной коммутации решает эту проблему; небольшой ресурс дугогасительного устройства по отключению токов короткого замыкания; относительная высокая стоимость в виду сложности технологии изготовления. Назначение и конструкции измерительных трансформаторов напряжения. Трансформаторы напряжения предназначены для измерения напряжения, питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю. Трансформаторы напряжения различаются: По числу фаз – однофазные и трёхфазные; По числу обмоток – двухобмоточные и трёхобмоточные; По способу охлаждения: трансформаторы с масляным охлаждением (масляные); трансформаторы с естественным воздушным охлаждением (сухие и с литой изоляцией). По роду установки: для внутренней установки; для наружной установки. Трансформатор напряжения (ТН) по принципу действия и конструктивному выполнению аналогичен обычному силовому трансформатору и состоит из стального сердечника (магнитопровода), собранного из тонких пластин трансформаторной стали, и двух обмоток – первичной и вторичной, изолированных друг от друга и от сердечника. Схемы включения трансформаторов напряжения В зависимости от назначения могут применяться разные схемы включения трансформаторов напряжения. Два однофазных трансформатора напряжения, соединенные в неполный треугольник, позволяют измерять два линейных напряжения. Целесообразна такая схема для подключения счетчиков и ваттметров. Для измерения линейных и фазных напряжений могут быть использованы три однофазных трансформатора (ЗНОМ, ЗНОЛ), соединенные по схеме «звезда — звезда», или трехфазный типа НТМИ. Также соединяются в трехфазную группу однофазные трехобмоточные трансформаторы типа ЗНОМ и НКФ. Присоединение расчетных счетчиков к трехфазным трансформаторам напряжения не рекомендуется, т.к. они имеют, обычно, несимметричную магнитную систему и увеличенную погрешность. Для этой цели желательно устанавливать группу из двух однофазных трансформаторов, соединенных в неполный треугольник. Трансформаторы напряжения выбирают по условиям Uуст ≤U1ном, S2≤ S2ном в намечаемом классе точности. За S2ном принимают мощность всех трех фаз однофазных трансформаторов напряжения, соединенных по схеме звезды, и удвоенную мощность однофазного трансформатора, включенного по, схеме неполного треугольника. Назначение и конструкции измерительных трансформаторов тока. Трансформатор тока — трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления. Измерительный трансформатор тока — трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке. Трансформаторы тока (далее — ТТ) широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт. К ТТ предъявляются высокие требования по точности. Как правило, ТТ выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков). Особенности конструкции Вторичные обмотки ТТ (не менее одной на каждый магнитопровод) обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации. Незначительное отклонение сопротивления вторичной цепи от номинала, указанного в паспорте ТТ, по модулю полного сопротивления Z или коэффициента мощностиcos φ (обычно cos φ = 0,8 индукт.) приводит к изменению погрешности преобразования и, возможно, ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокоенапряжениево вторичной обмотке, достаточное дляпробояизоляции трансформатора, что приводит к выходу трансформатора из строя, а также создаёт угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровода трансформатор начинает перегреваться, что также может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. Полностью разомкнутая вторичная обмотка ТТ не создаёт компенсирующего магнитного потока в сердечнике, что приводит к перегреву магнитопровода и его выгоранию. При этом магнитный поток, созданный первичной обмоткой, имеет очень высокое значение, и потери в магнитопроводе сильно нагревают его. В конструктивном отношении трансформаторы тока выполнены в виде сердечника, шихтованного из холоднокатанной кремнистойтрансформаторной стали, на которую наматываются одна или несколько вторичных изолированных обмоток. Первичная обмотка также может быть выполнена в виде катушки, намотанной на сердечник, либо в виде шины. В некоторых конструкциях вообще не предусмотрена встроенная первичная обмотка; первичная обмотка выполняется потребителем путём пропускания провода через специальное окно. Обмотки и сердечник заключаются в корпус для изоляции и предохранения обмоток. В некоторых современных конструкциях ТТ сердечник выполняется из нанокристаллических (аморфных) сплавов для расширения диапазона, в котором трансформатор работает в классе точности. Коэффициент трансформации измерительных трансформаторов тока является их основной характеристикой. Номинальный (идеальный) коэффициент указывается на шильдикетрансформатора в виде отношения номинального тока первичной (первичных) обмоток к номинальному току вторичной (вторичных) обмоток, например, 100/5 А или 10-15-50-100/5 А (для первичных обмоток с несколькими секциями витков). При этом реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих — синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального. Эти величины регламентированы ГОСТами и служат основой для присвоения трансформаторам тока классов точности при проектировании и изготовлении. Поскольку в магнитных системах имеют место потери, связанные с намагничиванием и нагревом магнитопровода, вторичный ток оказывается меньше номинального (то есть погрешность отрицательная) у всех ТТ. В связи с этим для улучшения характеристик и внесения положительного смещения в погрешность преобразования применяют витковую коррекцию. А это означает, что коэффициент трансформации у таких откорректированных трансформаторов не соответствует привычной формуле соотношений витков первичной и вторичной обмоток. Классификация трансформаторов тока Трансформаторы тока классифицируются по различным признакам: измерительные защитные промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.); лабораторные (высокой точности, а также со многими коэффициентами трансформации). 2. По роду установки: для наружной установки (в открытых распределительных устройствах); для внутренней установки; встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.; накладные — надевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора); переносные (для контрольных измерений и лабораторных испытаний). 3. По конструкции первичной обмотки: многовитковые (катушечные, с петлевой обмоткой и с т. н. «восьмёрочной обмоткой»); одновитковые (стержневые); шинные. 4. По способу установки: проходные; опорные. 5. По выполнению изоляции: с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.); с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией; газонаполненные (элегаз); с заливкой компаундом. 6. По числу ступеней трансформации: одноступенчатые; двухступенчатые (каскадные). 7. По рабочему напряжению: на номинальное напряжение свыше 1000 В; на номинальное напряжение до 1000 В. 8. Специальные трансформаторы тока: нулевой последовательности; пояс Роговского. Конструкции силовых трансформаторов. Силовые трансформаторы делаются масляными, сухими. Высоковольтный аппарат представляет собой сложное инженерное оборудование. В аппарат входит: Станина установки. Прямоугольный масляный бак. Термосифонный фильтр. Магнитопроводы. Обмотки низкого потенциала (2-слойная цилиндрическая). Обмотки высокой амплитуды. Вводные проходные изоляторы 2 классов амплитуды. Расширительная ёмкость. Газовое реле. Переключающее устройство РПН. Моторный привод. Радиаторы с вентиляторами, охладителями. Привод переключающего устройства. Запорная арматура по маслу, воде, газу. По количеству фаз трансформаторы выпускают: однофазные, трёхфазные. Системы охлаждения силовых трансформаторов. При работе трансформатора происходит нагрев обмоток и магнитопровода за счет потерь энергии в них. Предельный нагрев частей трансформатора ограничивается изоляцией, срок службы которой зависит от температуры нагрева. Чем больше мощность трансформатора, тем интенсивнее должна быть система охлаждения. Ниже приводится краткое описание систем охлаждения трансформаторов. Естественное воздушное охлаждение Естественное воздушное охлаждение трансформаторов осуществляется путем естественной конвекции воздуха и частично лучеиспускания в воздухе. Такие трансформаторы получили название «сухих» Условно принято обозначать естественное воздушное охлаждение при открытом исполнении С; при защищенном исполнении СЗ, при герметизированном исполнении СГ, с принудительной циркуляцией воздуха СД. Допустимое превышение температуры обмотки сухого трансформатора над температурой охлаждающей среды зависит от класса нагревостойкости изоляции и согласно ГОСТ 11677-85 должно быть не больше: 60°С (класс А); 75°С (класс Е); 80°С (класс В); 100°С (класс F); 125°С (класс Н). Данная система охлаждения малоэффективна, поэтому применяется для трансформаторов мощностью до 1600 кВА при напряжении до 15 кВ. Естественное масляное охлаждение Естественное масляное охлаждение (М) выполняется для трансформаторов мощностью до 16000 кВА включительно. В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается окружающему маслу, которое, циркулируя по баку и радиаторным трубам, передает его окружающему воздуху. При номинальной нагрузке трансформатора температура масла в верхних, наиболее нагретых слоях не должна превышать +95°С. Для лучшей отдачи тепла в окружающую среду бак трансформатора снабжается ребрами, охлаждающими трубами или радиаторами в зависимости от мощности. Масляное охлаждение с дутьем и естественной циркуляцией масла Масляное охлаждение с дутьем и естественной циркуляцией масла (Д) применяется для более мощных трансформаторов. В этом случае в навесных охладителях из радиаторных труб помещаются вентиляторы. Вентилятор засасывает воздух снизу и обдувает нагретую верхнюю часть труб. Пуск и останов вентиляторов могут осуществляться автоматически в зависимости от нагрузки и температуры нагрева масла. Трансформаторы с таким охлаждением могут работать при полностью отключенном дутье, если нагрузка не превышает 100% номинальной, а температура верхних слоев масла не более +55°С, также при минусовых температурах окружающего воздуха и при температуре масла не выше +45°С независимо от нагрузки. Максимально допустимая температура масла в верхних слоях при работе с номинальной нагрузкой +95°С. Форсированный обдув радиаторных труб улучшает условия охлаждения масла, а, следовательно, обмоток и магнитопровода трансформатора, что позволяет изготовлять такие трансформаторы мощностью до 80000 кВА. Масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители Масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители (ДЦ) применяется для трансформаторов мощностью 63000 кВА и более. Охладители состоят из системы тонких ребристых трубок, обдуваемых снаружи вентилятором. Электронасосы, встроенные в маслопроводы, создают непрерывную принудительную циркуляцию масла через охладители. Благодаря большой скорости циркуляции масла, развитой поверхности охлаждения и интенсивному дутью охладители обладают большой теплоотдачей и компактностью. Переход к такой системе охлаждения позволяет значительно уменьшить габариты трансформаторов. Охладители могут устанавливаться вместе с трансформатором на одном фундаменте или на отдельных фундаментах рядом с баком трансформатора. Направленный поток масла (НДЦ) В трансформаторах с направленным потоком масла (НДЦ) интенсивность охлаждения повышается, что позволяет увеличить допустимые температуры обмоток. Масляно-водяное охлаждение с принудительной циркуляцией масла (Ц) Масляно-водяное охлаждение с принудительной циркуляцией масла (Ц) принципиально устроено так же, как система ДЦ, но в отличие от последнего охладители состоят из трубок, по которым циркулирует вода, а между трубками движется масло. Температура масла на входе в маслоохладитель не должна превышать +70°С. Чтобы предотвратить попадание воды в масляную систему трансформатора, давление масла в маслоохладителях должно превышать давление циркулирующей в них воды не менее чем на 0,02 МПа (2 Н/см2). Эта система охлаждения эффективна, но имеет более сложное конструктивное выполнение и применяется на мощных трансформаторах (160 MBА и более). Масляно-водяное охлаждение с направленным потоком масла (НЦ) Масляно-водяное охлаждение с направленным потоком масла (НЦ) применяется для трансформаторов мощностью 630 MBА и более. На трансформаторах с системами охлаждения ДЦ и Ц устройства принудительной циркуляции масла должны автоматически включаться одновременно с включением трансформатора и работать непрерывно независимо от нагрузки трансформаторов. В то же время число включаемых в работу охладителей определяется нагрузкой трансформатора. Такие трансформаторы должны иметь сигнализацию о прекращении циркуляции масла, охлаждающей воды или об останове вентилятора. Следует отметить, что в настоящее время ведутся разработки новых конструкций трансформаторов с обмотками, охлаждаемыми до очень низких температур. Металл при низких температурах обладает сверхпроводимостью, что позволяет резко уменьшить сечение обмоток. Трансформаторы с использованием принципа сверхпроводимости (криогенные трансформаторы) будут иметь малую транспортировочную массу при мощностях 1000 MBА и выше. Каждый трансформатор имеет условное буквенное обозначение, которое содержит следующие данные в том порядке, как указано ниже: число фаз (для однофазных — О; для трехфазных — Т); вид охлаждения — в соответствии с пояснениями, приведенными выше; число обмоток, работающих на различные сети (если оно больше двух), для трехобмоточного трансформатора Т; для трансформатора с расщепленными обмотками Р (после числа фаз); буква Н в обозначении при выполнении одной из обмоток с устройством РПН; буква А на первом месте для обозначения автотрансформатора. За буквенным обозначением указывается номинальная мощность, кВА; класс напряжения обмотки (ВН); климатическое исполнение и категория размещения по ГОСТ 15150-69 и ГОСТ 15543-70. Например, ТДТН-16000/110-У1 — трехфазный трансформатор с системой охлаждения Д, трехобмоточный, с регулированием напряжения под нагрузкой, номинальной мощностью 16000 кВА, напряжением ВН 110 кВ; климатическое исполнение У (умеренный климат); категория размещения 1 (на открытом воздухе). Условия параллельной работы трансформаторов. Системы регулирования напряжения трансформаторов. Условия параллельной работы трансформаторов. В электрических сетях, как правило, параллельная работа трансформаторов не применяется. Это обусловлено потребностью снижения токов короткого замыкания в сетях 6 и 10 кВ. В настоящее время для РУ 35-6 кВ применяется одинарная система шин. При этом в нормальном состоянии секционный выключатель отключен. Параллельная работа трансформатора характеризуется особенной работой обмоток. К первичным контурам подводится питающая сеть. Подключение обмотки вторичного типа производится к общей сети. Исходящее электричество питает различных потребителей. Существуют определённые условия параллельной работы трансформаторов. Всего установлено 5 пунктов. Включенные приборы работают правильно про следующих условиях: Фaзиpoвкa. Выполнение этого условия трансформаторами является обязательным. Иначе будет наблюдаться короткое замыкание. Коки вторичных цепей позволяют выполнить фазировку. Фазы соединений согласовываются со стороны низкого, высокого напряжения. Напряжение на обмотках вторичных и первичных катушек при соединении должно быть разным. Это условие выполняется c соблюдением особенностей изоляции. Коэффициент трансформации всех элементов системы должен быть идентичным. Соединить устройство допускается, если отклонение показателя не превышает 0,5 %. Напряжение короткого замыкания равно для всех агрегатов. Это способствует выполнению обмотками установленных функций. Сопротивление контура возрастает при высоком напряжении короткого замыкания. Увеличивая его уровень для маломощного агрегата, можно получить перегрузку. Для нормальных условий функционирования системы при выполнении стандартов отклонение между показателями короткого замыкания устройств не превышает 10%. Включить параллельным соединением допускается одинаковые обмотки, соответствующие друг другу. При несоблюдении этого условия работающими приборами вырабатываются уравнительные токи. Наблюдается сдвиг фазы. Мощность аппаратуры не должная отличаться в 3 раза. Это является важным условие правильной работы системы. В противном случае мощный прибор увеличивает нагрузку на следующие приборы. Маломощные агрегаты будут перегружены. Соединять подобные устройства запрещается правилами безопасности. Системы регулирования напряжения силовых трансформаторов. Для нормальной работы потребителей необходимо поддерживать определённый уровень напряжения на шинах станций и подстанций. Предусматривается несколько способов регулирования напряжения, наиболее распространённые основываются на изменение коэффициента трансформации трансформаторов. Известно, что коэффициент трансформации определяется как отношение первичного напряжения к вторичному, или , где w1,w2 — число витков первичной и вторичной обмоток соответственно. Отсюда . Обмотки трансформаторов снабжаются дополнительными ответвлениями, с помощью которых можно изменять коэффициент трансформации. Переключение ответвлений может происходить без возбуждения (ПБВ), т. е. после отключения всех обмоток от сети или под нагрузкой (РПН). Устройство ПБВ позволяет регулировать напряжение в пределах ±5% и не позволяет регулировать напряжение в течение суток, так как это потребовало бы частого отключения трансформатора для производства переключений, что по условиям эксплуатации практически недопустимо. Обычно ПБВ используется только для сезонного регулирования напряжения. Регулирование под нагрузкой (РПН) за счет специальных технических решений позволяет переключать ответвления обмотки трансформатора без разрыва цепи. Устройство РПН предусматривает регулирование напряжения в различных пределах в зависимости от мощности и напряжения трансформатора (от ±10 до +16 % ступенями приблизительно по 1,5 %). Конструкции открытых распределительных устройств (ОРУ). Распределительное устройство, расположенное на открытом воздухе, называется открытым распределительны мустройством (ОРУ). Как правило, РУ напряжением 35 кВ и выше сооружаются открытыми. Также, как и ЗРУ, открытые РУ должны обеспечить: надёжность работы, безопасность и удобство обслуживания при минимальных затратах на сооружение, возможность расширения, максимальное применение крупноблочных узлов заводского изготовления. Расстояние между токоведущими частями и от них до различных элементов ОРУ должно выбираться в соответствии с требованиями ПУЭ [4]. Все аппараты ОРУ располагаются на невысоких основаниях (металлических или железобетонных). По территории ОРУ предусматриваются проезды для возможности механизации монтажа и ремонта оборудования. Шины могут быть гибкими из многопроволочных проводов или из жёстких труб. Гибкие шины крепятся с помощью подвесных изоляторов на порталах, а жесткие — с помощью опорных изоляторов на железобетонных или металлических стойках. Применение жесткой ошиновки позволяет отказаться от порталов и уменьшить площадь ОРУ. Под силовыми трансформаторами, масляными реакторами и баковыми выключателями 110 кВ и выше предусматривается маслоприемник для сброса масла в аварийных случаях. Кабели оперативных цепей, цепей управления, релейной защиты, автоматики и воздухопроводы прокладывают в лотках из железобетонных конструкций без заглубления их в почву или в металлических лотках, подвешенных к конструкциям ОРУ. Открытое РУ должно быть ограждено. К конструктивным элементам ОРУ относятся сборные шины и ошиновка. Сборные и соединительные шины (ошиновку) ОРУ выполняют гибкими и жесткими шинами, возможно применение комбинированных конструкций — жёстких шин и гибкой ошиновки. Преимущественно гибкие шины получили распространение на напряжение 35 кВ и выше. В качестве гибких шин используют много — проволочные витые алюминиевые (А), сталеалюминиевые (АС) и полые алюминиевые (ПА) провода. В зависимости от номинального тока и напряжения в одной фазе может быть от 1 до 5 проводов. (Количество проводов в фазе на ОРУ меньше, чем на ЛЭП, из-за большего сечения проводов.) В токопроводах до 330 кВ использование шин из нескольких проводов в одной фазе обусловлено большими рабочими токами. В установках 330 кВ и выше это решение применяется для снижения напряженности поля вокруг токопровода с целью устранения коронного разряда. Конструкции комплектных распределительных устройств (КРУ). Распределительным устройством (РУ) называют электроустановку, служащую для приема и распределения электроэнергии и содержащую коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства зашиты, автоматики и измерительные приборы. Распределительные устройства типа КРУ представляют собой шкаф, разделенный на несколько отсеков: трансформаторов тока и отходящего кабеля, сборных шин, выкатная часть и отсек вторичных цепей. Ячейка КСО для КРУ Назначение оперативного тока, источники постоянного оперативного тока в системах электроснабжения подстанций. Совокупность источников питания, кабельных линий, шин питания переключающих устройств и других элементов оперативных цепей составляет систему оперативного тока данной электроустановки. Оперативный ток на подстанциях служит для питания вторичных устройств, к которым относятся оперативные цепи защиты, автоматики и телемеханики, аппаратура дистанционного управления, аварийная и предупредительная сигнализация. При нарушениях нормальной работы подстанции оперативный ток используется также для аварийного освещения и электроснабжения электродвигателей (особо ответственных механизмов). Обычно оперативный ток переменный. Источниками переменного оперативного тока являются измерительные трансформаторы и трансформаторы собственных нужд (ТСН) установленные на подстанции. В некоторых случаях применяются системы постоянного тока. В качестве источников питания для данной системы применяются аккумуляторные батареи. Большим преимуществом системы постоянного оперативного тока является автономность. В системах выпрямленного оперативного тока источниками питания являются выпрямительные блоки (диодные мосты). Назначение оперативного тока, источники выпрямленного и переменного оперативного тока в системах электроснабжения подстанций. Совокупность источников питания, кабельных линий, шин питания переключающих устройств и других элементов оперативных цепей составляет систему оперативного тока данной электроустановки. Оперативный ток на подстанциях служит для питания вторичных устройств, к которым относятся оперативные цепи защиты, автоматики и телемеханики, аппаратура дистанционного управления, аварийная и предупредительная сигнализация. При нарушениях нормальной работы подстанции оперативный ток используется также для аварийного освещения и электроснабжения электродвигателей (особо ответственных механизмов). Требования, предъявляемые к системам оперативного тока К системам оперативного тока предъявляют требования высокой надежности при коротких замыканиях и других ненормальных режимов в цепях главного тока. Классификация систем оперативного тока на электрических подстанциях Применяются следующие системы оперативного тока на подстанциях: 1) постоянный оперативный ток — система питания оперативных цепей, при которой в качестве источника питания применяется аккумуляторная батарея; ; 2) переменный оперативный ток — система питания оперативных цепей, при которой в качестве основных источников питания используются измерительные трансформаторы тока защищаемых присоединений, измерительные трансформаторы напряжения, трансформаторы собственных нужд. В качестве дополнительных источников питания импульсного действия используются предварительно заряженные конденсаторы; 3) выпрямленный оперативный ток — система питания оперативных цепей переменным током, в которой переменный ток преобразуется в постоянный (выпрямленный) с помощью блоков питания и выпрямительных силовых устройств. В качестве дополнительных источников питания импульсного действия могут использоваться предварительно заряженные конденсаторы; 4) смешанная система оперативного тока — система питания оперативных цепей, при которой используются разные системы оперативного тока (постоянный и выпрямленный, переменный и выпрямленный). В системах оперативного тока различают: — зависимое питание, когда работа системы питания оперативных цепей зависит от режима работы данной электроустановки (подстанции); — независимое питание, когда работа системы питания оперативных цепей не зависит от режима работы данной электроустановки. Области применения различных систем оперативного тока Постоянный оперативный ток применяется на подстанциях 110-220 кВ со сборными шинами этих напряжений, на подстанциях 35-220 кВ без сборных шин на этих напряжениях с масляными выключателями с электромагнитным приводом, для которых возможность включения от выпрямительных устройств не подтверждена заводом-изготовителем. Переменный оперативный ток применяется на подстанциях 35/6(10) кВ с масляными выключателями 35 кВ, на подстанциях 35-220/6(10) и 110-220/35/6(10) кВ без выключателей на стороне высшего напряжения, когда выключатели 6(10)-35 кВ оснащены пружинными приводами. Выпрямленный оперативный ток должен применяться: на подстанциях 35/6(10) кВ с масляными выключателями 35 кВ, на подстанциях 35-220/6(10) кВ и 110-220/35/6(10) кВ без выключателей на стороне высшего напряжения, когда выключатели оснащены электромагнитными приводами; на подстанциях 110 кВ с малым числом масляных выключателей на стороне 110 кВ. Типовые схемы проходных и ответвительных подстанций. Главная схема электрических соединений подстанции выбирается с учетом схемы развития электрических сетей энергосистемы или схемы электроснабжения района. По способу присоединения к сети все подстанции можно разделить на тупиковые, ответвительные, проходные, узловые. Тупиковая подстанция — это подстанция, получающая электроэнергию от одной электроустановки по одной или нескольким параллельным линиям. Ответвительная подстанция присоединяется глухой отпайкой к одной или двум проходящим линиям. Проходная подстанция включается в рассечку одной или двух линий с двусторонним или односторонним питанием. Узловая подстанция — это подстанция, к которой присоединено более двух линий питающей сети, приходящих от двух или более электроустановок. Тупиковые и ответвительные подстанции выполняются по упрощенным схемам без выключателей высокого напряжения. Однотрансформаторная подстанция может присоединяться к питающей сети по схеме блок трансформатор — линия с установкой КЗ и ОД или передачей телеотключающего импульса на опорную подстанцию. Подстанции 35 — 110 кВ с двухобмоточными трансформаторами небольшой мощности (до 6300 кВ·А) могут иметь на стороне ВП только предохранитель и разъединитель. В этом случае необходимо проверить селективность работы предохранителей и релейной защиты линий. Двухтрансформаторные подстанции в отличие от схемы снабжаются автоматической или неавтоматической перемычкой на стороне высшего напряжения. В автоматической перемычке установлен разъединитель и отделитель двустороннего действия. Нормально РЗ включен, а ОДЗ отключен, так как режим работы двух линий на один трансформатор через включенную перемычку недопустим: при повреждении в одной из параллельных линий релейная защита отключит обе линии. Рис. 6.12. Схемы двухтрансформаторных ответвительных подстанций: а – с автоматической перемычкой; б – с неавтоматической перемычкой Аварийное отключение линий происходит гораздо чаще, чем трансформаторов. В этом случае и используется перемычка. Так, при устойчивом к. з. на линии Л1 отключается выключатель В1 на питающем конце, защитой минимального напряжения отключается выключатель ВЗ, а затем отделитель ОД1. Для восстановления в работе трансформатора Г1 автоматически включается отделитель ОДЗ в перемычке, а затем выключатель ВЗ. Таким образом, на подстанции будут работать оба трансформатора и одно из ответвлений к транзитной линии Л2. Если при включенной перемычке произойдет к. з. в трансформаторе Т1, то отключится ВЗ, включится короткозамыкатель К31, отключится В2, в бестоковую паузу отключится ОДЗ, затем сработает АПВ, и линия Л2 останется в работе, следовательно останется в работе и трансформатор Т2. Как видно из описания различных режимов работы схемы, автоматические переключения возможны только при четком согласовании работы всех элементов. Например, нельзя включить ОДЗ, если не отключен ОД1 или ОД2; ОД1 и ОД2 можно отключать лишь после надежного отключения ВЗ или В4 и при отсутствии напряжения на линиях Л1, Л2; если включен КЗ1 или К32, включать ОДЗ нельзя. Соблюдение всех этих условий достигается специальными блокировками. Возможно применение схемы с ремонтной перемычкой из двух разъединителен РЗ, Р4, один из которых в нормальном режиме отключен. При устойчивом повреждении на линии Л1 отключаются В1 и ВЗ и действием АВР на стороне 6 — 10 кВ включается ВС, обеспечивая питание потребителей от Т2. Если линия выводится в ремонт, то действиями дежурного персонала подстанции или оперативной выездной бригадой отключается Р1, включается перемычка РЗ, Р4 и трансформатор Т1 ставится под нагрузку включением ВЗ с последующим отключением ВС. В этой схеме возможно питание Т1 от линии Л2 при ремонте Л1 (или Т2 от линии Л1). Для увеличения надежности работы таких подстанций отделители и короткозамыкатели открытого исполнения заменяются отделителями и короткозамыкателями с элегазом.. Дальнейшим развитием упрощенных схем будет внедрение выключателей нагрузки высокого напряжения на одно, два и три направления. Такие выключатели позволят не только присоединить подстанцию к проходящей линии, но и секционировать последнюю. в) Схемы проходных подстанций: Если подстанция включена в рассечку линии с двусторонним питанием, то в цепях трансформаторов устанавливаются отделители, а в перемычке — выключатель. В нормальном режиме выключатель В1 включен, ремонтная перемычка разомкнута разъединителем РЗ или Р4. Рис. 6.13. Схема проходной подстанции с выключателем в перемычке. При повреждении Т1 включается К31, отключается В1, а затем В2 на опорной подстанции А. В бестоковую паузу отключится отделитель ОД1, затем включаются В1 и В2. Переток мощности не нарушен, трансформатор отключен. При повреждении на одной линии, например Л2, отключится В2, затем В3 на опорной подстанции Б. Если АПВ линии оказалось неуспешным, отключится В5, и действием АВР будет включен выключатель ВС. Таким образом, электроснабжение потребителей не нарушится. При необходимости ревизии выключателя В1 включается перемычка РЗ, Р4, через которую осуществляется переток мощности. Значительная экономия средств может быть достигнута внедрением схем подстанций с выключателями нагрузки 110 — 220 кВ. Выключатели нагрузки с элегазом на одно, два и три направления (ВНЭ I, ВНЭ II, ВНЭ III) позволяют создать схемы автоматического секционирования сети. На подстанции 1 установлены три выключателя нагрузки на одно направление каждый, на подстанции 2 — один выключатель нагрузки на три направления (третья камера использована для установки трансформатора тока) и один — на два направления. Подстанцию можно оборудовать одним выключателем нагрузки на три направления, что еще больше упростит ее конструкцию и снизит капитальные затраты. Рис. 6.14. Схема проходной подстанции с выключателями нагрузки: а – с ВНЭ I, б – с ВНЭ II и ВНЭ III. Линия между опорными подстанциями А и Б разделена на три участка. При повреждении на Л2 отключатся В1, В2, автоматически отключатся ВН2 и ВН4 в сторону линии Л2, а затем АПВ включит В1, В2. Работа подстанций не нарушена. Если подстанцию 1 присоединить глухой отпайкой , то при повреждении Л2 она потеряет питание на время, необходимое для прибытия персонала, отыскания места повреждения, и отсоединения поврежденного участка. Ущерб от недоотпуска электроэнергии в этом случае может быть значительным. Для двухтрансформаторных подстанций, присоединяемых к двухцепным линиям, секционирование линий с помощью выключателей нагрузки также целесообразно. Освоение выпуска таких выключателей позволит широко применить секционирование сетей, автоматизировать работу сетевых подстанций и увеличить надежность электроснабжения. На проходных подстанциях возможно также применение схем мостика с выключателями. В сетях 220 — 330 кВ применяют также кольцевые схемы, обеспечивающие более высокую надежность и оперативную гибкость. Трансформаторы (автотрансформаторы) присоединяются через отделители в вершинах четырехугольника: АТ1 соединен в блок с Л1, АТ2 — в блок с Л4. Линии Л1, Л4 — радиальные, линии Л2, ЛЗ — транзитные. В цепях линий могут устанавливаться отделители или разъединители с дистанционным приводом. Рис. 6.14. Схема расширенного четырехугольника. Это позволит восстановить работу схемы на стороне 220 — 330 кВ после отключения поврежденной линии. Схемы распределительных устройств напряжения 6–10 кВ. Для обеспечения электроэнергией местных потребителей и собственных нужд (СН) на подстанциях используются РУ 10(6) кВ. Применяются схемы с одной, двумя, четырьмя секционированными системами сборных шин (их три — 10(6)-1, 10(6)-2, 10(6)-3). Для данного курсового проекта рекомендуются схемы 10(6)-1, 10(6)-2. Схема 10(6) — 1 – одна секционированная выключателем система шин, применяется при двух трансформаторах, каждый из которых присоединен к одной секции, [схема 10(6) — 1, рис. 3.11]. Схема 10(6) — 2 – две секционированные выключателями системы шин, применяются при двух трансформаторах с расщепленными обмотками НН присоединенных каждый к двум секциям [схема 10(6) — 2, рис. 3.12]. Рис. 3.11 Рис.3.12 Схема 10(6) – 1 Схема 10(6) — 2

или напишите нам прямо сейчас

Написать в WhatsApp Написать в Telegram

О сайте
Ссылка на первоисточник:
http://inig.sfu-kras.ru/
Поделитесь в соцсетях:

Оставить комментарий

Inna Petrova 18 минут назад

Нужно пройти преддипломную практику у нескольких предметов написать введение и отчет по практике так де сдать 4 экзамена после практики

Иван, помощь с обучением 25 минут назад

Inna Petrova, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Коля 2 часа назад

Здравствуйте, сколько будет стоить данная работа и как заказать?

Иван, помощь с обучением 2 часа назад

Николай, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Инкогнито 5 часов назад

Сделать презентацию и защитную речь к дипломной работе по теме: Источники права социального обеспечения. Сам диплом готов, пришлю его Вам по запросу!

Иван, помощь с обучением 6 часов назад

Здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Василий 12 часов назад

Здравствуйте. ищу экзаменационные билеты с ответами для прохождения вступительного теста по теме Общая социальная психология на магистратуру в Московский институт психоанализа.

Иван, помощь с обучением 12 часов назад

Василий, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Анна Михайловна 1 день назад

Нужно закрыть предмет «Микроэкономика» за сколько времени и за какую цену сделаете?

Иван, помощь с обучением 1 день назад

Анна Михайловна, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Сергей 1 день назад

Здравствуйте. Нужен отчёт о прохождении практики, специальность Государственное и муниципальное управление. Планирую пройти практику в школе там, где работаю.

Иван, помощь с обучением 1 день назад

Сергей, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Инна 1 день назад

Добрый день! Учусь на 2 курсе по специальности земельно-имущественные отношения. Нужен отчет по учебной практике. Подскажите, пожалуйста, стоимость и сроки выполнения?

Иван, помощь с обучением 1 день назад

Инна, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Студент 2 дня назад

Здравствуйте, у меня сегодня начинается сессия, нужно будет ответить на вопросы по русскому и математике за определенное время онлайн. Сможете помочь? И сколько это будет стоить? Колледж КЭСИ, первый курс.

Иван, помощь с обучением 2 дня назад

Здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Ольга 2 дня назад

Требуется сделать практические задания по математике 40.02.01 Право и организация социального обеспечения семестр 2

Иван, помощь с обучением 2 дня назад

Ольга, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Вика 3 дня назад

сдача сессии по следующим предметам: Этика деловых отношений - Калашников В.Г. Управление соц. развитием организации- Пересада А. В. Документационное обеспечение управления - Рафикова В.М. Управление производительностью труда- Фаизова Э. Ф. Кадровый аудит- Рафикова В. М. Персональный брендинг - Фаизова Э. Ф. Эргономика труда- Калашников В. Г.

Иван, помощь с обучением 3 дня назад

Вика, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Игорь Валерьевич 3 дня назад

здравствуйте. помогите пройти итоговый тест по теме Обновление содержания образования: изменения организации и осуществления образовательной деятельности в соответствии с ФГОС НОО

Иван, помощь с обучением 3 дня назад

Игорь Валерьевич, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Вадим 4 дня назад

Пройти 7 тестов в личном кабинете. Сооружения и эксплуатация газонефтипровод и хранилищ

Иван, помощь с обучением 4 дня назад

Вадим, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Кирилл 4 дня назад

Здравствуйте! Нашел у вас на сайте задачу, какая мне необходима, можно узнать стоимость?

Иван, помощь с обучением 4 дня назад

Кирилл, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Oleg 4 дня назад

Требуется пройти задания первый семестр Специальность: 10.02.01 Организация и технология защиты информации. Химия сдана, история тоже. Сколько это будет стоить в комплексе и попредметно и сколько на это понадобится времени?

Иван, помощь с обучением 4 дня назад

Oleg, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Валерия 5 дней назад

ЗДРАВСТВУЙТЕ. СКАЖИТЕ МОЖЕТЕ ЛИ ВЫ ПОМОЧЬ С ВЫПОЛНЕНИЕМ практики и ВКР по банку ВТБ. ответьте пожалуйста если можно побыстрее , а то просто уже вся на нервяке из-за этой учебы. и сколько это будет стоить?

Иван, помощь с обучением 5 дней назад

Валерия, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Инкогнито 5 дней назад

Здравствуйте. Нужны ответы на вопросы для экзамена. Направление - Пожарная безопасность.

Иван, помощь с обучением 5 дней назад

Здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Иван неделю назад

Защита дипломной дистанционно, "Синергия", Направленность (профиль) Информационные системы и технологии, Бакалавр, тема: «Автоматизация приема и анализа заявок технической поддержки

Иван, помощь с обучением неделю назад

Иван, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru

Дарья неделю назад

Необходимо написать дипломную работу на тему: «Разработка проекта внедрения CRM-системы. + презентацию (слайды) для предзащиты ВКР. Презентация должна быть в формате PDF или формате файлов PowerPoint! Институт ТГУ Росдистант. Предыдущий исполнитель написал ВКР, но работа не прошла по антиплагиату. Предыдущий исполнитель пропал и не отвечает. Есть его работа, которую нужно исправить, либо переписать с нуля.

Иван, помощь с обучением неделю назад

Дарья, здравствуйте! Мы можем Вам помочь. Прошу Вас прислать всю необходимую информацию на почту и написать что необходимо выполнить. Я посмотрю описание к заданиям и напишу Вам стоимость и срок выполнения. Информацию нужно прислать на почту info@the-distance.ru